
Electrostatics of two unequal adhering spheres

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 2847

(http://iopscience.iop.org/0305-4470/13/8/032)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 2847-2851. Printed in Great Britain 

COMMENT 

Electrostatics of two unequal adhering spheres 

D J Jeffrey and Y Onishit 
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge 

Received 24 January 1980,.in final form 3 March 1980 

Abstract. The method recently put forward for finding the electrostatic fields around two 
touching spheres must be generalised to include the possibility that a small residual gap 
remains between the spheres. The reason is that the calculated values of some quantities are 
significantly affected if such a gap exists and, since a real physical system can only 
approximate mathematical spheres in point contact, it is important to be able to calculate 
deviations from ideal behaviour. The generalisation is illustrated using four different 
problems. 

1. Introduction 

Moussiaux and Ronveaux (1979) have given a formal expression for the electrostatic 
field around two unequal spheres in point contact, and used it to calculate the 
capacitance of two unequal adhering spheres. They stated that their general method 
could be applied both to other charge configurations and to the calculation of other 
quantities. Although their statement is formally correct, it is important to make the 
proviso that some calculations are very sensitive to slight deviations from the assumed 
geometry. We illustrate this by solving three new electrostatic problems, calculating 
each time the spheres’ charges and dipole moments, and showing that some quantities 
depend in a singular way on the size of any small residual gap between the spheres. We 
also give new simple expressions for the charge and dipole moment of a sphere. 

We define four electrostatic problems: (a) the spheres are at the same potential; (b) 
the spheres are at opposite potentials; (c) grounded spheres are in an applied field 
parallel to the line of centres and (d) grounded spheres are in an applied field 
perpendicular to the line of centres. Problem (b) is strictly only defined when there is a 
gap between the spheres, but in spite of this the general method for touching sgheres 
gives a formal solution for the field, which we later supplement with a separate analysis 
of the gap region. Problem (a) was solved by Moussiaux and Ronveaux (1979), 
although they did not calculate the dipole moments of the spheres. Because elec- 
trostatic fields can.be superimposed, the singularity in problem (b) can appear in other 
problems, for example, a problem (bc) in which the charge on each sphere is given and 
their potentials are determined by an applied field (and the size of the small gap). 
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2. The expressions for the fields 

Let the spheres have radii a and b, let A = a / b  and let o = b / ( a  + 6 ) .  The point at which 
the spheres touch is taken as the origin for a set of cylindrical polar coordinates 
(ar, az,  8) with the z axis along the line of centres. Tangent-sphere coordinates ([,q 8) 
are defined by 

z = X/(t2+ 777, r = 277/(t2 + 77’). 
This coordinate system has been amply illustrated in Smith and Barakat (1975), 
Moussiaux and Ronveaux (1979) and Moon and Spencer (1961) and will not be 
described further here. The general solution of Laplace’s equation appropriate to 
problems (a)-(c) is 

For problems (a) and (b) we set the potential equal to + 1 on the top sphere (radius a )  
and f 1 on the bottom sphere, and obtain the following expressions for f and g, the 
upper sign applying to problem (a). 

f sinh(1 + A)s = e-’ cosh As F e-As cosh s, 

g sinh(1 + A)s = e-’ sinh As f e-As sinh s. 

For problem (c) the potential at infinity obeys 4,- - Ecaz and our general solution (1) 
now applies to 4, + E,az, with fc and g, given by 

fc s inh(l+ A)s = 2 ~ a E , ( e - ~  cosh As +e-As cosh s), 

g, sinh( 1 + A)s = 2saEc(e-’ sinh As - e-” sinh s). 

Finally, for problem (d), we have 

with fd and gd given by 

fd sinh(1 + A)s = 2s(e-’ cosh As -e-’’ cosh s), 

gd sinh(1 +A)s = 2s(e-’ sinh As +e-*’sinh s). 

For the special case A = 1, the above expressions agree with corresponding ones given in 
Jeffrey (1978), when we note that the directions of the fields in (c) and (d) have been 
reversed. 

3. Charges on the spheres 

In SI units the charge on the upper sphere is 
. 2 ~  .m 
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while that on the lower sphere is 
271 m 

Q'= - a ~ ~ j ~  jo [a4/dt16=-~[2a dv  dO/(A2+v2)1. (3) 

Substituting the general expression (1) into (2) and (3), we find that the charges in cases 
(a)-(c) are given by the simple formulae 

m 

Q = 4moU Io ( g * f )  ds, 

where the + sign is taken for the upper sphere. Now substituting the explicit 
expressions for f and g, we arrive at the following results. For problem (a), the charge 
on the upper sphere is 

Q E  = 4 ~ ~ o a ( l + A ) - ' [ $ ( l ) - $ ( w ) ] ,  

where $ is defined in Gradshteyn and Ryzhik (1965, 0 8.361), and the charge on the 
lower sphere Q', is obtained by replacing $(U) by $(1 - U ) .  The sum Ql: + Q: agrees 
with existing results, when allowance is made for different units. Problem (b) gives an 
integrand that is not integrable and so is treated separately. For problem (c), 

Q," = 4moa2(1 + A)-2[&r2 +((2, o)]E,, 

and - 0: is obtained by replacing ((2, w )  by ((2, 1 - U ) ,  the function t being defined in 
Gradshteyn and Ryzhik (1965,O 9.521). For problem (d) the charge integrates to zero. 

4. The singular problem (b) 

If the spheres are separated by a small gap of width 2aS, with S << 1, we can find 
expressions for Qb which are singular as In S .  Outside the gap, the expression (1) is an 
approximation correct to O(S),  provided 7 < vo, where vo is a measure of the 'edge' of 
the gap. Inside the gap we define stretched coordinates by (Jeffrey 1978) 

z = z / S ,  R = r/S'I2. 

The upper surface of the gap is then given to O(S)  by Z = 1 +$R2,  the lower by 

(4) 

This expression is valid for R < Ro, where Ro is another measure of the edge of the gap. 
The charge on the upper surface of the gap is 

QE(gap) = 2 m o a  

We note that the contribution is singular as In Ro. We now cancel this singularity with a 
similar one in the contribution to QZ from outside the gap. On the top sphere we write: 

z =  - I - -  :AR2. The potential in the gap satisfies a2@/aZ2 = 0 and is 

CD = [ 1 + :( 1 + A )R  ' ] - ' [Z + $(A -- l )R 2] + O(6). 

(dCD/aZ)R dR = 4 ~ € o U ( l  + A ) - '  ln[l + i ( l  +A)Ri]. loR0 

m 

+ (1 + v2)1'2 Io [sfb cosh s - 2(1 + A  1-l e-' + sgb sinh s]Jo(sq) ds. 
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When we substitute this into (2), we find that the first term leads to a singularity, and so 
we integrate it only to T ~ ,  the edge of the gap. The remaining terms we integrate as 
before to obtain 

m 

QE(sphere) = 4 m o a  (1 + A ) - ’  ln(1 + 7;) +lo [ f b  + gb- 2(1 + A ) - ’ s - ’  e-”] ds). 

Using the relation S1”RO = 2v0/(1 + 7;) to add the two contributions together, we 
obtain, on performing the integrations, 

Q; =4.rreoa(l+A)-’[ln ~5-’-ln(l +A)-$(l)-$(0)1+0(S). 

The singular dependence on the gap width is thus clearly seen. A parallel set of 
manipulations for the lower sphere shows that - (2: can be obtained by replacing $(a) 
by $(I -01. 

5. Dipole moment 

The final quantity we calculate is the dipole moment, defined by 

where a/an is the outward normal derivative. For problems (a)-(c) only the z 
component of S is non-zero and for the upper sphere it is 

S” = 27reoa2 Io [aqb/~3[]~=~[4q d q / ( l +  1 7 2 ) 2 ] 0  
03 

Substituting the general expression (l), we obtain 

S u = $ m o a 2  [o [sf+fe--’(sinhs+2s coshs)+sg+g e-’(2s s inhs+coshs)]ds  
m 

+ {&,U 3 ~ c } ,  

where the final term is needed for problem (c) and is the contribution from the field 
- aEcz. Similarly, we obtain 

S ’ = $ r c 0 a 2  lom [sf+fe-As(A-l sinhAs+2s cosh AS)-sg 

- g  e-””(2s sinh As + A - ’  cosh As)] ds + { $ ~ E ~ A - ~ U ~ E , } .  

Finally, using the explicit forins for f and g, we arrive at 

sf: = ~ T E o U ~ ( ~  -tA)-2[1(2, 0 )  --:r2], 

S: =47reoa2(1 +A)-2[5(2, wj+ i7r2 ] ,  

S: = 8 7 r ~ o a ~ ( 1 +  A ) - 3 [ 4 ‘ ( 3 ,  0 )  + 5(3)]Ec. 

To obtain S’ from these formulae, change w to 1 - O  and change the sign of S,. 
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For problem (d), S is parallel to Ed and has magnitude 

for the upper sphere. This leads to the explicit formula 

si = 4 m o a 3 ( 1  +A)-3[5(3, w)-l(3)]Ed. 

We can obtain SL by changing w to 1 - w. 

6. The effects of deviations from point contact 

Let us define a problem in which spheres with fixed zero charge are placed in the applied 
field of problem (c), and we ask for the potential vbc  of each sphere. We write 
V:,QE + QE = 0 and solve for VEc. 

VEC = -aEc(l +A)-l[;.rr2+[(2, o)]/[ln S-'-In(l +A)-I,b(l)-I,b(w)]. 

We note that V:c = 0, but the dependence on In 8-' means that even very small 
gaps will produce a significant deviation from zero. For example if S = 0.001 and A = 1, 
then Vic = -0-38aEC. A similar comment applies to the dipole moment Sbc, given by 

s b c  = v b c s b  + sc. 
We note that it was not necessary to have a gap to keep S b  finite, but even so s b c  remains 
sensitive to its existence, for example, if A = 1 then S b c ( S  = 0 )  = 9 . 6 ? ~ a ~ ~ ~ E ~ ,  but 
s b c ( S  = 0.001) = 7' 1 na 3E&c. 

One of us (YO) thanks the British Council for financial support. 
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